Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(17): 6626-6634, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37070858

RESUMO

Eobania vermiculata is a hazardous snail that can damage ornamental plants and cause significant harm to plant sections in Egyptian areas. Herein, the molluscicidal activity of CuPb-Ferrite/TiO2 and TiO2 nanoparticles (NPs) against E. vermiculata was evaluated using the poisonous bait method. LC50 values were determined using the leaf dipping and contact methods, with values of 631.23 and 1703.49 ppm for CuPb-Ferrite/TiO2 and 193.67 and 574.97 ppm for TiO2. Exposure to both NPs resulted in a significant increase in the biochemical parameters of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), as well as a decrease in total protein (TP) percentage of E. vermiculata. Histological examinations revealed that many digestive cells had ruptured, and their contents had been lost, while the foot's epithelial layer became ruptured. The average reduction was 66.36% for CuPb-Ferrite/TiO2 NPs compared to the recommended molluscicide, Neomyl, with a 70.23% reduction in the field application. Electrophoretic separation of total protein using sodium dodecyl sulfate-polyacrylamide gel electrophoresis after treatment with LC50 concentrations of TiO2 and CuPb-Ferrite/TiO2 demonstrated the potency of these synthetic compounds as molluscicidal agents. Therefore, we recommend the use of CuPb-Ferrite/TiO2 NPs as a novel land snail molluscicide because it is safe to use, and the baits are arranged to not affect irrigation water, with a high molluscicidal effect.


Assuntos
Nanocompostos , Titânio , Animais , Titânio/farmacologia , Caramujos
2.
Top Curr Chem (Cham) ; 380(5): 39, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35951266

RESUMO

Solar-driven photocatalysis mediated by semiconductors has been rapidly developed as a green and sustainable technology for environmental remediation. Continuous efforts have been devoted to novel semiconducting photocatalysts to boost the efficiency of the photocatalytic system. However, controversy has widely existed in materials characterization and photocatalytic activity evaluation. This review overviews the recent advances in characterization methodology and photocatalytic activity evaluation of solar-driven catalysts (SDCs) for environmental remediation. After a general and brief introduction of different SDCs, the compositional, structural, and optical characterizations of SDCs are summarized. Moreover, the characterization methods and challenges in the doped and coupled SDCs are discussed. Finally, the challenges in the evaluation of current evaluation methods for the photocatalytic activity of SDCs are highlighted.


Assuntos
Recuperação e Remediação Ambiental , Titânio , Catálise , Semicondutores , Luz Solar , Titânio/química
3.
Environ Pollut ; 308: 119691, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35792294

RESUMO

The glass clover snail, Monacha cartusiana (M. cartusiana) is one of the most seriously impacting economic animal pests spreading across Egypt which inflicts severe damages to the agriculture. A green route is developed by deploying an abundant Rosemary plant leaves aqueous extract to synthesize ZnO and F-doped ZnO (F-ZnO) nanoparticles (NPs) that display high molluscicidal activities against the M. cartusiana land snails via leaf dipping and contact techniques. The effect of lethal concentrations, that kills 50% of exposed snails (LC50) value of the treatments, is examined on the activity of alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), enzymes, total protein (TP), total lipids (TL) and cholesterol level of snails, including the histopathological evaluation of the digestive gland and foot of M. Cartusiana. Their molluscicidal activity as poisonous baits under field conditions is also evaluated and compared to the recommended molluscicide, Neomyl. The results show that F- doping dramatically improves the snail control capability of ZnO NPs, and promotes a considerable increase in both ALT and AST enzymes with an enhancement of TL and Cholesterol levels, but a significant decrease in TP content and ALP activity in treated snails compared to the control group. The LC50 values are found to be 1381.55 and 2197.59 ppm using the leaf dipping for F-ZnO and ZnO, while 237.51 and 245.90 ppm can be achieved using the contact technique, respectively. The greenly synthesized F-ZnO and ZnO NPs induce severe histological alterations in the digestive gland and foot of M. cartusiana, including a complete destruction of the digestive tubules. The histological evaluation of the foot of M. cartusiana exposed to ZnO, shows a rupture of the epithelial layer of the foot sole, while F- ZnO NPs causes the folds of the foot becoming deeper and the rupture of epithelial layer. Our field experiments further demonstrate that F-ZnO achieves 60.08% reduction, while ZnO attains 56.39% diminution in snail population compared to the commercial, Neomyl (69.55%), exhibiting great potentials in controlling the harmful land snail populations.


Assuntos
Moluscocidas , Óxido de Zinco , Animais , Colesterol , Dose Letal Mediana , Moluscocidas/toxicidade , Extratos Vegetais/química , Folhas de Planta , Óxido de Zinco/toxicidade
4.
Chemosphere ; 271: 129524, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33460895

RESUMO

Visible-light-responsible S-doped TiO2(GST) nanoparticles (NPs) are synthesized via sol-gel process, and an aqueous extract of Malva parviflora (MP) plant is used as the green and versatile medium with excellent reducing and capping properties to facilitate the S-doping and crystal growth of anatase. Compared with the counterpart (CST) derived from the conventional organic solvent. GST show a smaller average particle size (20.3 vs. 29.5 nm) with a larger surface area (135 vs 95 m2/g), together with the more significant red shift to longer wavelength in the visible light region. XPS analysis shows Ti4+ cations are substituted by S6+ ions into the lattice structure of TiO2 for both samples. The photodynamics of CST and GST catalysts are examined by electron paramagnetic resonance (EPR) spectroscopy, which shows the surface Ti3+ sites can be oxidized easily by the surface adsorbed O2 molecules, forming O2- radicals. Their photocatalytic activities (PCA) are evaluated by degrading methyl orange (MO) dye under the visible light irradiation. GST exhibit higher PCA in MO bleaching and chemical oxygen demand (COD) reduction. In addition, antimicrobial and antioxidant assays of CST and GST NPs also show that the irradiated NPs samples show higher antibacterial activities. GST NPs have a higher antibacterial activity than CST NPs against all tested bacteria and the minimum inhibitory concentration (MIC) is optimized to 25 µg/mL. The in-vitro antioxidant activity evaluated by the radical cation de-colorization test using 1,1-diphenyl-2-picrylhydrazyl (DPPH) further demonstrates that GST NPs give a better antioxidant activity.


Assuntos
Anti-Infecciosos , Malva , Nanopartículas , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Iluminação , Extratos Vegetais , Luz Solar , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...